
The Wanda-Server

(Very First Pre-Alpha) Version 0.1

Christian Veenhuis

January 31, 2003

Christian Veenhuis:
The Wanda-Server

Contents

1 Introduction 5

1.1 Structure of the Wanda-Server 5

2 Requirements 7

3 Procedure of a Plug-In Call 9

4 Examples 11

4.1 Script-based Plug-in 11

4.2 Binary-based Plug-in 13

4.2.1 Static Parameter . .. 13

4.2.2 Variable Parameter .. 15

A WPML Reference of all Elements 19

A.1 Root Element and Meta Data. 20

A.1.1 WPML . 20

A.1.2 description 21

A.2 Variables 22

A.2.1 vars . 22

A.2.2 var . 22

A.3 Invocation of Plug-in 22

A.3.1 call . 22

A.3.2 location . 23

A.3.3 invocation 23

A.3.4 parameter 24

A.3.5 usevar . 24

A.3.6 useinput . 24

A.3.7 useoutput . 25

A.4 Communication. 25

A.4.1 protocol. 25

3

4 CONTENTS

A.4.2 to server 25

A.4.3 to client . 26

A.4.4 transfervar . 26

A.4.5 transferinput . 27

A.4.6 transferoutput . 27

A.4.7 call plugin . 27

A.5 Error Handling . 28

A.5.1 errors .. 28

A.5.2 error . 28

B WPML Document Type Definition (DTD) 29

Chapter 1

Introduction

The Wanda-Server (’WS’) provides the functionality of processing modules (”plug-ins”) over a network.
Wanda-Clients (’WC’) can call these plug-ins by using the WS. A single plug-in provides algorithms or
other processing steps of the field of image processing. A single plug-in can be used by a WC by connecting
to it over the WS. This way, meta-data like e.g. name, description or the version can be obtained and the
plug-in can also be executed. The communication between a WC and the WS as well as the transfer of data
between a WC and an appropriate plug-in will be realized by XML documents, as depicted in figure 1.1.

Figure 1.1: Wanda-Server and Wanda-Client

A WC can be any software program which understand the communication protocol using these XML doc-
uments. The WS is a software system running on every server within a network (internet/intranet). A WC
is a software system which can be used on any computer system e.g. desktop PC’s, Mac’s, Linux-systems,
Laptops, etc.. Thereby also a single computer can be used as client and server, i.e. a WC and a WS can be
installed on the same system (e.g. a laptop).

1.1 Structure of the Wanda-Server

The WS is a multi-threaded server which can operate on any number of requests from WCs concurrently.
Each WC connecting to the WS gets its own thread. By using this thread the whole communication using
XML documents can be realized. Thereby, each WC can do any number of request concurrently. This

5

6 CHAPTER 1. INTRODUCTION

isn’t depicted in figure 1.2 for simplicity. Each thread gets the whole access to all installed plug-ins. Each
plug-in is an executable program which can be written in any programming language. Communication with
the WS is realized by using arguments as well as input and output files.

Figure 1.2: Structure of the Server

The advantages of this concept are:

1. The whole functionality of the WS is situated central on a server.

2. The extension of the functionality can be done by merely copying the new module into a given plug-in
directory. This way it extends the functionality for all users simultaneously.

3. Improvements and debugging of failures of the plug-ins can be done centralized. This way, changes
take effect to all WCs at once.

4. Platform independent, because XML documents are purely text-based.

5. Every executable program (even scripts, batch-files etc.) can be used as plug-in.

6. By using ASCII documents the usage of the HTTP protocol combined with one of the well-known
web-servers can be possible.

Some disadvantages shall not be hided:

1. For every call of a plug-in the whole input-data must be transmitted to the WS and the output-data
must be transferred back. This takes more time then using the plug-in modules directly within the
program which needs the functionality.

2. A WC must either be written in Java or developed with a system/language which is able to process
XML.

3. Because a plug-in is a normal executable program it has the same disadvantages of the CGI programs
used within web-servers: Resources, e.g. connections to databases must be established every time
the plug-in is called.

Chapter 2

Requirements

The main concept behind the Wanda-Server (’WS’) is the ability to use every kind of executable program,
script or whatever as plug-in. To realize this, one has to fulfill the following requirements while developing
a WS plug-in:

1. The plug-in has to be an executable program (or script) which can be called within a shell.

2. The program is not allowed to wait for user interaction. No interaction will be given. Thus the
program should be command line oriented.

3. The program gets an argument as filename for each input and output file. Such an argument consists
of an absolute path of the appropriate file. But no extensions can be expected,i.e. the filename could
consist only of a number like/bin/wanda/temp/4324 even if this file is e.g. a.jpg or .xml file.

4. The sequence of arguments can be freely defined by the plug-in developer. Also arguments (e.g. own
static parameters or variables) can be used, i.e. arguments not used for the input and output files. This
sequence can be defined by using WPML.

5. The program must return an exit code after execution. In C/C++ this would be the return value of the
main function or the value of the exit() function.

6. The program must return a 0 as exit code if the execution was successful.

7. For every case of an error, the program must return an exit code unequal to 0 defined by the plug-in
developer. Additionally, the plug-in developer can specify his own error codes within the WPML
document. This is not a must, but every not specified error results in an ’unspecified error’.

8. For the program, a WPML document must be written. This WPML document represents the plug-in
and is analyzed by the Wanda-Server. By the way, one could write even multiple WPML documents
for the same program, whereby each WPML document uses e.g. a different call and arguments for
the program.

The main advantages of this concept are given in the following:

1. No restrictions are made to the used programming language. Even scripts could be used.

2. No APIs or libraries needed.

7

8 CHAPTER 2. REQUIREMENTS

3. No one has to incorporate into a library or API or a new programming language.

4. Because the arguments can be defined freely within the WPML document, every command line ori-
ented program able to get an input and output filename can be used as plug-in.

The following points could be understood as disadvantages of this concept:

1. Every plug-in has to be able to read the different image file formats for itself. No support is given by
the WS. However, the librariesSIC ImageandSIC Sequiare provided within the Wanda environment
to support plug-in development.

2. Because the communication between the WS and the plug-in will be done by using files, this could
lead to a worse performance than by using e.g. shared objects or DLLs as plug-ins. That means, the
development and integration of plug-ins as libraries would enable a faster calling of these plug-ins.

Chapter 3

Procedure of a Plug-In Call

This chapter describes the procedure of the Wanda-Server, if a plug-in is called. If the Wanda-Client sends a
request to call a plug-in, the Wanda-Server creates a contextC which contains among other things functions
for getting unique filenames for all input (Uinput) and output (Uout put) files with the appropriate numbers
Ninput andNout put :

Uinput : {0, . . . ,Ninput −1}→ Z (3.1)

Uout put : {0, . . . ,Nout put −1}→ Z (3.2)

C = (Uinput = {n �→ inn | 0≤ n < Ninput},Uout put = {n �→ outn | 0≤ n < Nout put}, . . .) (3.3)

The context will be created by the Wanda-Server and gets unique filenames. For this, the Wanda-Server
manages a countercnames which can be accessed only synchronized (because the Wanda-Server uses concur-
rent threads). This counter is initialized (cnames = 0) if the Wanda-Server starts to run. After each call to this
counter, it will be incremented. For this the functionUnames :→ Z will be used:Unames() = cnames,cnames =
cnames +1.

The unique filenames are created as follows:

1. Create input filenames:Uinput = /0
∀n ∈ {0, . . . ,Ninput −1} : Uinput = Uinput ∪{n �→Unames()}

2. Create output filenames:Uout put = /0
∀n ∈ {0, . . . ,Nout put −1} : Uout put = Uout put ∪{n �→Unames()}

With the contextC (containing these unique filenames) the plug-in can be executed. This invocation of the
plug-in is realized by the following steps:

1. Create invocation commandCMD as string:
StringDIR = absolute path to the location of the input and output files.
StringCMD = content of WPML elementlocation.
For each elementE nested in WPML elementinvocationin top down order, do:

9

10 CHAPTER 3. PROCEDURE OF A PLUG-IN CALL

• E = parameter: CMD = CMD + content of this WPML elementparameter

• E = useinput: CMD = CMD + DIR + Uinput(useinput.number)

• E = useoutput: CMD = CMD + DIR + Uout put(useoutput.number)

• E = usevar: CMD = CMD + content of this WPML elementusevar

2. Execute plug-in by using the built invocation command. For this, use a system-call to invoke plug-in:
Runtime.getRuntime().exec(CMD).

3. Get exit codee of plug-in. Every Wanda-Server plug-in has to return an exit code to indicate the state
of success. If this exit code is unequal to 0, an error has occurred. In this case, the appropriate error
message has to be determined and returned. For this, a list oferrorelements can be specified within
WPML documents nested in anerrorselement as list:EL = {ERROR1, . . . ,ERRORn}, whereby each
error has a code and a message:ERROR(ERRORcode ∈ N ,ERRORmessage). The error message is
determined as follows:
if e �= 0:
if ∃ERROR ∈ EL.ERRORcode = e
then returnERRORmessage

else return ”CallPlugin: unspecified error”
If no error occurs the exit code 0 is returned:
if e = 0
then return ”OK”.

Chapter 4

Examples

This chapter reveals some examples of WPML documents describing plug-ins. Especially in section 4.2
WPML documents using all features of WPML are presented. A reference of all WPML elements can be
found in chapter A.

4.1 Script-based Plug-in

Every executable program or script can be used as plug-in for the Wanda-Server. Imagine one has the
following batch file calledversion.bat on a DOS operating system:

ver > %1

This batchfile writes the version number of the DOS system into a file given as first argument. If one
wants to use this batch file as Wanda-Server plug-in to get the version number of the operating system the
Wanda-Server is working on, one could use the following WPML document:

< WPML
name = "dos-ver"
version = "0.1"
author = "Veenhuis, Christian"
inputs = "0"
outputs = "1"
>

< description> This plugin returns the version of the DOS </ description>

< call>
< location> plugins/version.bat </ location>
< invocation>
< use output number="0"/>

</ invocation>
</ call>

11

12 CHAPTER 4. EXAMPLES

< protocol>

< call plugin />

< to client>
< transfer output number="0"/>

</ to client>

</ protocol>

</ WPML>

With the elementsWPML anddescriptionsome meta data are defined for this plug-in. Additionally this
WPML document consists of two areas defined by the elementscall andprotocol.

The first area represents the call of the plug-in described with the following part:

< call>
< location> plugins/version.bat </ location>
< invocation>
< use output number="0"/>

</ invocation>
</ call>

The locationelement contains the name of the script relative to the Wanda-Server (or as absolute path).
The arguments used to call the plug-in are specified within theinvocationelement. The batch file only uses
one output and no input files. This fact is declared by the attributesinputs andoutputs of theWPML
element. The only argument is the name of an output file. This name is represented by theuseoutput
element.

The second area defines the communication sequence between the Wanda-Client and this plug-in. This is
defined by the following part:

< protocol>

< call plugin />

< to client>
< transfer output number="0"/>

</ to client>

</ protocol>

Because this example uses no input files, nothing needs to be transferred from the Wanda-Client to the
Wanda-Server. Thus, the plug-in can be called immediately. After this, the generated output file can
be transferred from the Wanda-Server to the Wanda-Client. This is described by using theto client and
transferoutputelements.

If a Wanda-Client calls this plug-in it will get back a file containing the version number of the DOS system.

4.2. BINARY-BASED PLUG-IN 13

4.2 Binary-based Plug-in

The example shown in section 4.1 uses only one output file. The following example uses an executable
program (.exe) on a DOS/Windows system. Of course, this example works on every platform, if the filename
of the executable is adapted to the platform-specific form. Unlike the example given in section 4.1 this
example uses additionally input files, parameters and variables. Thereby two slightly different versions of
plug-ins are described, althoug both plug-ins use the same binary executable. This shows that a plug-in
means a more abstract thing and is not a synonym for one executable file.

The two plug-ins are described in the following sections. For this we assume the existance of a program
calledbinarize.exe. Calling this program in a shell produce the following output:

> binarize
binarize <input> <output> <threshold>

>

This program needs one input and one output file as well as a threshold for the binarizing operator. It returns
the following exit codes:

Exit Code Meaning

0 Success (no error)
-1 Wrong number of arguments
-2 Unknown image format
-3 Couldn’t read image
-4 Couldn’t write image
-5 Threshold invalid ([0;255])

4.2.1 Static Parameter

Assumed, one wants to use the programbinarize.exe as described above to create a plug-in which bina-
rizes the images with a static threshold of 127. This can be realized with the following WPML document:

< WPML
name = "bin"
version = "0.1"
author = "Veenhuis, Christian"
inputs = "1"
outputs = "1"
>

< description> Binarizes the given image with threshold 127 </ description>

< call>
< location> plugins/binarize/binarize.exe </ location>
< invocation>
< use input number="0"/>

14 CHAPTER 4. EXAMPLES

< use output number="0"/>
< parameter> 127 </ parameter>

</ invocation>
</ call>

< protocol>

< to server>
< transfer input number="0"/>

</ to server>

< call plugin />

< to client>
< transfer output number="0"/>

</ to client>

</ protocol>

< errors>
< error code="-1" msg="Wrong number of arguments"/>
< error code="-2" msg="Unknown image format"/>
< error code="-3" msg="Couldn’t read image"/>
< error code="-4" msg="Couldn’t write image"/>
< error code="-5" msg="Threshold invalid ([0;255])"/>

</ errors>

</ WPML>

With the elementsWPML anddescriptionsome meta data are defined for this plug-in. Additionally this
WPML document consists of three areas defined by the elementscall, protocolanderrors.

The first area represents the call of the plug-in described with the following part:

< call>
< location> plugins/binarize/binarize.exe </ location>
< invocation>
< use input number="0"/>
< use output number="0"/>
< parameter> 127 </ parameter>

</ invocation>
</ call>

Thelocationelement contains the name of the program relative to the Wanda-Server (or as absolute path).
The arguments used to call the plug-in are specified within theinvocationelement. This example uses one
input and one output file (as declared in theWPML element). The invocation is build in top-down order of
the elements contained within theinvocationelement. That means, the first argument is the name for the
input file, the second is the name of the output file produced by the program. The third argument is a static

4.2. BINARY-BASED PLUG-IN 15

parameter which is used for each call of this plug-in. Such parameters can be declared by usingparameter
elements.

The second area defines the communication sequence between the Wanda-Client and this plug-in. This is
defined by the following part:

< protocol>

< to server>
< transfer input number="0"/>

</ to server>

< call plugin />

< to client>
< transfer output number="0"/>

</ to client>

</ protocol>

In this example one input file is used. This input file should be transferred from the Wanda-Client to
the Wanda-Server as first action to be existance while calling the program. For this theto serverand
transferinputelements are used. After this, the program for this plug-in is called. The generated output file
can be transferred from the Wanda-Server to the Wanda-Client. This is described by using theto clientand
transferoutputelements.

In some cases the program for this plug-in could return an error. This can happen, if, e.g., the input file
from the Wanda-Client doesn’t fulfill the expectations of the program. For this, all possible errors returned
by the program can be declared within the WPML document:

< errors>
< error code="-1" msg="Wrong number of arguments"/>
< error code="-2" msg="Unknown image format"/>
< error code="-3" msg="Couldn’t read image"/>
< error code="-4" msg="Couldn’t write image"/>
< error code="-5" msg="Threshold invalid ([0;255])"/>

</ errors>

If one of these errors occur, the Wanda-Server returns the appropriate error-code and message back to the
Wanda-Client.

4.2.2 Variable Parameter

Assumed, one wants to use the programbinarize.exe as described above to create a plug-in which
binarizes the images with any threshold. The threshold shall be given over from the Wanda-Client. This
can be realized with the following WPML document:

< WPML
name = "bint"
version = "0.1"

16 CHAPTER 4. EXAMPLES

author = "Veenhuis, Christian"
inputs = "1"
outputs = "1"
>

< description> Binarizes the given image with the given threshold </ description>

< vars>
< var name="threshold" />

</ vars>

< call>
< location> plugins/binarize/binarize.exe </ location>
< invocation>
< use input number="0"/>
< use output number="0"/>
< use var name="threshold" />

</ invocation>
</ call>

< protocol>

< to server>
< transfer input number="0"/>
< transfer var name="threshold" />

</ to server>

< call plugin />

< to client>
< transfer output number="0"/>

</ to client>

</ protocol>

< errors>
< error code="-1" msg="Wrong number of arguments"/>
< error code="-2" msg="Unknown image format"/>
< error code="-3" msg="Couldn’t read image"/>
< error code="-4" msg="Couldn’t write image"/>
< error code="-5" msg="Threshold invalid ([0;255])"/>

</ errors>

</ WPML>

4.2. BINARY-BASED PLUG-IN 17

This example resembles the above example in section 4.2.1. Therefore, only the differences are explained
in the following.

To use variable arguments (i.e. arguments transferred from the Wanda-Client) one has to declare them like
the following:

< vars>
< var name="threshold" />

</ vars>

Thevarselement can hold any number ofvarelements. Every variable which shall be used is to declare by
using avarelement. This way, the Wanda-Server can handle the usage of variables within the other WPML
elements. For this example a variable calledthreshold is declared.

Instead of using theparameterelement, theusevar element is used to create the third argument for the
program:

< call>
< location> plugins/binarize/binarize.exe </ location>
< invocation>
< use input number="0"/>
< use output number="0"/>
< use var name="threshold" />

</ invocation>
</ call>

That means that the content of this variable is used as argument. This content must be transferred from the
Wanda-Client to the Wanda-Server:

< protocol>
< to server>
< transfer input number="0"/>
< transfer var name="threshold" />

</ to server>
...

</ protocol>

In this example first the input file and afterwards the variable are transferred from the Wanda-Client to the
Wanda-Server. But this order can be defined freely by the plug-in developer.

Appendix A

WPML Reference of all Elements

This chapter reveals all elements with their definitions in form of a language reference. The single elements
are presented with the following notation:

< NameOfElement

NameOfAttribute = " Default"

>

[frequ] <ContentElement> Default content </ContentElement>

</ NameOfElement>

NameOfElement
The name of the element according to its task e.g.var, invocation or error.

NameOfAttribute
An element can possess arbitrarily many attributes. Beside its name (NameOfAttribute) a single attribute
possesses a default value (Default). The default value is taken, whenever this attribute is not defined
explicitly.

ContentElement
Some elements can have as many as desired elements as subordinated contents. Everyone of these subordi-
nated elements is an independent element thus possessing its ownNameOfElement. Similar to the attributes
it possesses also a content as default (Default content). The default content is used, if no other content
was explicitly defined. The specification[frequ] indicates how much of the appropriate elements are al-
lowed to occur. A number forfrequ means exactly this number of occurences. A+ means at least one,
a ? zero or one, and an* any number of occurences (including 0). Sometimes the content is optionally
presented by a simple explaination.

To clarify the notation a sample element with the namePerson (not existent in WPML) is described:

< Person

name REQUIRED

19

20 APPENDIX A. WPML REFERENCE OF ALL ELEMENTS

age = " 19"
weight = " 70.0"

>

[*] <Hobby> </Hobby>
[+] <Residence> Berlin </Residence>
[1] <ID> </ID>

</ Person>

In the description of the elementPerson all valid description elements were used for the definition of the
WPML elements. There are the name of element (Person), some attributes and two content elements.
The attributes possess default values (up to thename attribute). To assign a name a default value is not
meaningful; instead one marks such attributes with the note: REQUIRED. Thus this attribute is marked as
mandatory necessary. The content elements are the elements for describing the hobbies if in existance (with
no default value), a single ID number and at least one residence (withBerlin as default). A validPerson
element in accordance with the above description would be:

< Person name = " Meier" weight = " 82.4" >

<Hobby> Parachuting </Hobby>
<Hobby> Sailing </Hobby>

<Residence> Munich </Residence>

<ID> IDP31415926 </ID>

</ Person>

In the following section all elements are presented using the above notation.

A.1 Root Element and Meta Data

A.1.1 WPML

The root element is situated on the highest level and encloses all other WPML elements. This element
represents the whole plug-in.

< WPML
name REQUIRED
author = ""
version = " 0"
inputs = " 1"
outputs = " 1"

>

[*] <description> </description>

A.1. ROOT ELEMENT AND META DATA 21

[*] <vars> </vars>
[*] <call> </call>
[*] <protocol> </protocol>
[*] <errors> </errors>

</ WPML>

Attribute: name
The name of the plug-in represented by thisWPML element.

Attribute: author
The author(s) of this WPML document.

Attribute: version
The version number of this WPML document (not the version of WPML).

Attribute: inputs
The number of input files transferred from Wanda Client to Wanda Server. The numbers in interval
[0;inputs−1] are used to identify the input files while invoking the plug-in or within the communication
protocol.

Attribute: outputs
The number of output files transferred from Wanda Server to Wanda Client. The numbers in interval
[0;out puts−1] are used to identify the output files while invoking the plug-in or within the communication
protocol.

Content: description
This element can contain any number ofdescriptionelements as described in section A.1.2. But only the
last defineddescriptionelement is used. All previous ones are ignored (or overwritten by the last one).

Content: vars
This element can contain any number ofvarselements as described in section A.2.1. The content of allvars
elements are collected.

Content: call
This element can contain any number ofcall elements as described in section A.3.1. But only the last
definedcall element is used. All previous ones are ignored (or overwritten by the last one).

Content: protocol
This element can contain any number ofprotocolelements as described in section A.4.1. The content of all
protocolelements are collected and executed in their order (top-down).

Content: errors
This element can contain any number oferrorselements as described in section A.5.1. The content of all
errorselements are collected.

A.1.2 description

This element contains a text simply describing this plug-in.

< description>

... any text ...

</ description>

22 APPENDIX A. WPML REFERENCE OF ALL ELEMENTS

Content
Any text can be used to describe the plug-in.

A.2 Variables

A.2.1 vars

Plug-ins can be invoked by using variables as arguments. Every variable transferred and used has to be
declared previously within avarselement.

< vars>

[+] <var />

</ vars>

Content: var
This element contains at least onevarelement as described in section A.2.2.

A.2.2 var

A single variable can be defined by using this element. Only the name of the variable is neccessary so that
the WPML interpreter is able to create and use this variable.

< var
name REQUIRED

>

</ var>

Attribute: name
The name of the variable. This name must be unique. Otherwise the WPML interpreter rejects the WPML
document.

A.3 Invocation of Plug-in

A.3.1 call

This element contains all information needed to create the call of the plug-in program. The contents of all
invocationchildren are collected from allcall elements.

< call>

[*] <location> </location>
[*] <invocation> </invocation>

</ call>

A.3. INVOCATION OF PLUG-IN 23

Content: location
This element can contain any number oflocationelements as described in section A.3.2. But only the last
definedlocationelement is used. All previous ones are ignored (or overwritten by the last one).

Content: invocation
This element can contain any number ofinvocationelements as described in section A.3.3. The content of
all invocationelements are collected and executed in their order (top-down).

A.3.2 location

This element contains the path for invocing the plug-in program.

< location>

... the path ...

</ location>

Content
Any valid text can be used as path for invoking the plug-in program. The separators ’/’ and ’\’ are automat-
ically adapted to the appropriate operating system. This path is supposed to be relative to the Wanda-Server
or absolute.

A.3.3 invocation

This elements collects the arguments for calling the plug-in.

< invocation>

[*] <parameter> </parameter>
[*] <use_var />
[*] <use_input />
[*] <use_output />

</ invocation>

Content: parameter
This element can contain any number ofparameterelements as described in section A.3.4. Allparameter
elements are collected and executed in their order (top-down).

Content: use var
This element can contain any number ofusevar elements as described in section A.3.5. Allusevar ele-
ments are collected and executed in their order (top-down).

Content: use input
This element can contain any number ofuseinput elements as described in section A.3.6. Alluseinput
elements are collected and executed in their order (top-down).

Content: use output
This element can contain any number ofuseoutputelements as described in section A.3.7. Alluseoutput
elements are collected and executed in their order (top-down).

24 APPENDIX A. WPML REFERENCE OF ALL ELEMENTS

A.3.4 parameter

This element enables the definition of static arguments. A static argument is an argument which is the same
for every call of the plug-in.

< parameter>

... the argument ...

</ parameter>

Content
Any text can be used as static argument for invoking the plug-in program.

A.3.5 use var

To use the content of a variable as argument, this element can be used. For this, the variable must be defined
within a varselement. The content of the variable is transferred between client and server according to the
communication protocol defined within theprotocolelement.

< use var
name REQUIRED

>

</ use var>

Attribute: name
The name of the variable. There must be a variable defined with this name within avarselement. Otherwise
the WPML interpreter rejects the WPML document.

A.3.6 use input

To use the unique name generated for the input file of a given number as argument, this element can be
used. For this, the given number must be in[0;WPML.inputs−1], i.e. it must be in the interval defined by
theWPML element.

< use input
number REQUIRED

>

</ use input>

Attribute: number
The number of input file. This number must be in[0;WPML.inputs−1]. Otherwise the WPML interpreter
rejects the WPML document.

A.4. COMMUNICATION 25

A.3.7 use output

To use the unique name generated for the output file of a given number as argument, this element can be
used. For this, the given number must be in[0;WPML.out puts−1], i.e. it must be in the interval defined
by theWPML element.

< use output
number REQUIRED

>

</ use output>

Attribute: number
The number of output file. This number must be in[0;WPML.out puts−1]. Otherwise the WPML inter-
preter rejects the WPML document.

A.4 Communication

A.4.1 protocol

This element contains all information needed to realize the bi-directional communication between the
Wanda-Client and Wanda-Server. Thereby all contained elements are executed in their order, i.e. you
can combine any number of those elements to realize a mixed communication (transfer things to the server,
then to client, maybe to the server again, call the plugin, etc.).

< protocol>

[*] <to server> </to server>
[*] <to client> </to client>
[*] <call plugin />

</ protocol>

Content: to server
This element can contain any number ofto serverelements as described in section A.4.2. Multipleto server
elements are executed in their order (top-down).

Content: to client
This element can contain any number ofto clientelements as described in section A.4.3. Multipleto client
elements are executed in their order (top-down).

Content: call plugin
This element can contain any number ofcall plugin elements as described in section A.4.7. Multiple
call pluginelements are executed in their order (top-down).

A.4.2 to server

This element collects a set of transfer commands. These transfers are done from the Wanda-Client to the
Wanda-Server in the defined order (top-down).

26 APPENDIX A. WPML REFERENCE OF ALL ELEMENTS

< to server>

[*] <transfer_var />
[*] <transfer_input />
[*] <transfer_output />

</ to server>

Content: transfer var
This element can contain any number oftransfervarelements as described in section A.4.4. Alltransfervar
elements are collected and executed in their order (top-down).

Content: transfer input
This element can contain any number oftransferinput elements as described in section A.4.5. Alltrans-
fer inputelements are collected and executed in their order (top-down).

Content: transfer output
This element can contain any number oftransferoutputelements as described in section A.4.6. Alltrans-
fer outputelements are collected and executed in their order (top-down).

A.4.3 to client

This element collects a set of transfer commands. These transfers are done from the Wanda-Server to the
Wanda-Client in the defined order (top-down).

< to client>

[*] <transfer_var />
[*] <transfer_input />
[*] <transfer_output />

</ to client>

Content: transfer var
This element can contain any number oftransfervarelements as described in section A.4.4. Alltransfervar
elements are collected and executed in their order (top-down).

Content: transfer input
This element can contain any number oftransferinput elements as described in section A.4.5. Alltrans-
fer inputelements are collected and executed in their order (top-down).

Content: transfer output
This element can contain any number oftransferoutputelements as described in section A.4.6. Alltrans-
fer outputelements are collected and executed in their order (top-down).

A.4.4 transfer var

To transfer the content of a variable, this element can be used. For this, the variable must be defined within
a varselement.

A.4. COMMUNICATION 27

< transfer var
name REQUIRED

>

</ transfer var>

Attribute: name
The name of the variable. There must be a variable defined with this name within avarselement. Otherwise
the WPML interpreter rejects the WPML document.

A.4.5 transfer input

To transfer an input file of a given number, this element can be used. For this, the given number must be in
[0;WPML.inputs−1], i.e. it must be in the interval defined by theWPML element.

< transfer input
number REQUIRED

>

</ transfer input>

Attribute: number
The number of input file. This number must be in[0;WPML.inputs−1]. Otherwise the WPML interpreter
rejects the WPML document.

A.4.6 transfer output

To transfer an output file of a given number, this element can be used. For this, the given number must be
in [0;WPML.out puts−1], i.e. it must be in the interval defined by theWPML element.

< transfer output
number REQUIRED

>

</ transfer output>

Attribute: number
The number of output file. This number must be in[0;WPML.out puts−1]. Otherwise the WPML inter-
preter rejects the WPML document.

A.4.7 call plugin

Whenever this element occurs within theprotocolelement, the plug-in program is executed according to the
call element. This element assumes that all needed input files and variables etc. are transferred by previously
definedto serverandto client elements. Thecall pluginelement can be called as often as needed. Thus, a
calling sequence in combination with the other elements of theprotocolelement can be realized.

< call plugin>

</ call plugin>

28 APPENDIX A. WPML REFERENCE OF ALL ELEMENTS

A.5 Error Handling

A.5.1 errors

Plug-in programs are able to return an exit-code as error code. E.g. if a called plug-in cannot handle the
given input files or arguments are wrong, an error code is returned. To inform the Wanda-Client about the
success of a call, an error code is returned by the Wanda-Client. If the plug-in returns an error code unequal
to 0, the appropriate error is searched within the list oferrorelements. The found error is returned to the
Wanda-Client. Could no appropriateerrorelement be found, an error with the message ’unspecified error’
is returned.

< errors>

[*] <error />

</ errors>

Content: error
This element can contain any number oferrorelements as described in section A.5.2. Allerrorelements
are collected.

A.5.2 error

A single error can be defined by using this element. For this, you can use the exit code of your plug-in
program as error code. Additionally, a message in form of a string (of one line text) can be specified. Both,
the error code and the message are returned to the Wanda-Client, if this error occurs.

< error
code REQUIRED
msg REQUIRED

>

</ error>

Attribute: code
The error code as signed integer. At this place, the exit code of the plug-in program can be specified. It
should be different to 0, because an exit code of 0 is interpreted as ’no error’. If you set this attribute to 0,
this errorelementt will be ignored.

Attribute: msg
The message of this error as string. Please use a senseful description so that a Wanda-Client can understand
the specific problem of your plug-in program.

Appendix B

WPML Document Type Definition
(DTD)

For the development of valid WPML descriptions with any (validating) XML editor, a document type
definition (DTD) was created for WPML. It describes the current state of WPML and is presented in the
following:

<!--

WPML (Wanda Plugin Modeling Language)

Version 0.1

07.10.2002

Christian Veenhuis

-->

<!-- ================= -->
<!-- WPML -->
<!-- ================= -->

<!ELEMENT WPML (description | vars | call | protocol | errors)* >

<!ATTLIST WPML name CDATA #REQUIRED >
<!ATTLIST WPML author CDATA "" >
<!ATTLIST WPML version CDATA "0" >
<!ATTLIST WPML inputs CDATA "1" >
<!ATTLIST WPML outputs CDATA "1" >

29

30 APPENDIX B. WPML DOCUMENT TYPE DEFINITION (DTD)

<!-- === -->
<!-- META DATA -->
<!-- === -->

<!-- ================= -->
<!-- description -->
<!-- ================= -->

<!ELEMENT description (#PCDATA) >

<!-- === -->
<!-- VARIABLES -->
<!-- === -->

<!-- ================= -->
<!-- vars -->
<!-- ================= -->

<!ELEMENT vars (var)+ >

<!-- ================= -->
<!-- var -->
<!-- ================= -->

<!ELEMENT var EMPTY >

<!ATTLIST var name CDATA #REQUIRED >

<!-- === -->
<!-- CALL -->
<!-- === -->

<!-- ================= -->
<!-- call -->
<!-- ================= -->

<!ELEMENT call (location|invocation)* >

<!-- ================= -->
<!-- location -->
<!-- ================= -->

31

<!ELEMENT location (#PCDATA) >

<!-- ================= -->
<!-- invocation -->
<!-- ================= -->

<!ELEMENT invocation (parameter|use_var|use_input|use_output)* >

<!ELEMENT parameter (#PCDATA) >

<!ELEMENT use_var EMPTY >
<!ATTLIST use_var name CDATA #REQUIRED >

<!ELEMENT use_input EMPTY >
<!ATTLIST use_input number CDATA #REQUIRED >

<!ELEMENT use_output EMPTY >
<!ATTLIST use_output number CDATA #REQUIRED >

<!-- === -->
<!-- PROTOCOL -->
<!-- === -->

<!-- ================= -->
<!-- protocol -->
<!-- ================= -->

<!ELEMENT protocol (to_server|to_client|call_plugin)* >

<!ELEMENT to_server (transfer_var|transfer_input|transfer_output)* >

<!ELEMENT transfer_var EMPTY >
<!ATTLIST transfer_var name CDATA #REQUIRED >

<!ELEMENT transfer_input EMPTY >
<!ATTLIST transfer_input number CDATA #REQUIRED >

<!ELEMENT transfer_output EMPTY >
<!ATTLIST transfer_output number CDATA #REQUIRED >

<!ELEMENT to_client (transfer_var|transfer_input|transfer_output)* >
<!-- <transfer_var> already defined -->
<!-- <transfer_input> already defined -->
<!-- <transfer_output> already defined -->

32 APPENDIX B. WPML DOCUMENT TYPE DEFINITION (DTD)

<!ELEMENT call_plugin EMPTY >

<!-- === -->
<!-- ERRORS -->
<!-- === -->

<!-- ================= -->
<!-- errors -->
<!-- ================= -->

<!ELEMENT errors (error)* >

<!-- ================= -->
<!-- error -->
<!-- ================= -->

<!ELEMENT error EMPTY >

<!ATTLIST error code CDATA #REQUIRED >
<!ATTLIST error msg CDATA #REQUIRED >

